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INTRODUCTION 
Quinoline analogues are an important class of 

natural and synthetic bicyclic nitrogen-containing 
heterocyclic compounds which have a wide range of 
applications.  These include biological roles as antagonists 
for the N-methyl-D-aspartate (NMDA) receptor glycine site 
[1-4] and the Follicle-stimulating hormone (FSH) 
receptor.[5,6] Some quinolones also have important roles as 
antimalarial[7], anti-bacterial, antifungal, anti-inflammatory, 
antitumor[8], anthelmintic, cardiotonic, analgesic activity, 
anticonvulsant, and antioxidant drugs.[9,10] Quinolines and 
other heterocyclic molecules were also useful ligands for 
transition-metal complexes[11] and are important building 
blocks in organic chemistry.[12-16] The inherent fluorescent 
properties of quinolones make them useful as emitting 
chromophores.[17,18] There is therefore considerable 
ongoing interest in improved syntheses of useful quinoline 
derivatives -particularly environmentally-friendly 
syntheses.[19-25] Most of the present routes to substituted 
quinolones have environmental drawbacks like using 
organic solvents, or traditional Lewis and Bronsted 
acids.[26-28] Most of these synthetic routes also produce a 
large amount of waste and require long reaction times.[29] 

 
We therefore set out to devise improved synthetic 

routes to quinolone derivatives. We decided to react various 
alkynes and aldehydes with amines using ultra sound 
irradiation under solvent-free conditions.  Additionally, we 
decided to use solid-supported catalysts because they are 
cost-effective due to the fact that they are reusable and they 
also have ecological benefits. Solid acid catalysts are easily 
handled and have high catalytic activities. Phosphosulfonic 
acid (PSA) is one of these and it provides easy accessibility 
of active sites, stability, hygroscopic properties, handling, 
reusability, and good product yields. Ultrasound-promoted 
synthesis is known to shorten many reaction times and 
important heterocycles have been synthesized under 
solvent-free conditions using this technique.[30-38] 

 
To the best of our knowledge, there are no reports 

on the synthesis of 2, 4-disubstituted quinolines under  

 
solvent-free ultrasound irradiation at 80 °C catalyzed by 
PSA which should provide a more environmentally friendly 
route to these compounds.  This would be quite desirable if 
current yields and reaction times were at least maintained.   
Herein, we report a facile one-pot synthesis of 2,4-
disubstituted quinolines via three-component coupling of 
alkynes, aldehydes and amines under solvent-free conditions 
using solid-supported PSA catalyst and ultrasound 
irradiation at 80°C (Scheme 1). 
 

Scheme 1: Synthesis of 2, 4-disubstituted quinolines. 
 

RESULT AND DISCUSSION 
The conventional and ultrasonic synthesis of 4-(2-

methoxyphenyl)-2-(4-methoxyphenyl) quinolone (4a) from 
ethynylbenzene (1), 4-methoxybenzaldehyde (2) and 4-
methoxyaniline (3) was used as a model (Table 1) to 
determine the best experimental conditions. We initially 
carried out the reactions without any catalyst (Table 1, 
entry 1). The reaction was then examined utilizing different 
catalysts under both conventional and ultrasound irradiation 
without solvent (Table 2, entries 2-10). In every case 
except one (Table 2, entry 5), ultrasonic conditions 
produced shorter reaction times and larger yields than 
conventional conditions. 
 

The reaction produced very low (<40% 
conventional and < 52% ultrasonic) yields when InF3, 
CAN-SiO2, and ZnCl2-SiO2were used as catalysts (Table 1, 
entries 2–4). Catalysts such as MnCl2·4H2O, Yb (OAc)3, 
NbCl5 and FePO4 gave larger (45-55% conventional and 55-
70% ultrasonic) yields (Table 1, entries 5–8) but these were 
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all lower than solid-supported catalysts such as PS/PTSA, 
MSA, and PSA (Table 1, entries 9–11). Among these solid-
supported catalysts, PSA showed the best results under 
ultrasound irradiation conditions. (Table 1, entry 11).The 
data in Table 1 reveal that yields increased slightly with mol 
% PSA up to 5%.  Yields at 10% PSA (Table 1, entry 14) 
were identical to those at 5%. The best results were 
obtained in the presence of PSA (5mol %) at 80 °C (Table 
1, entry 11) affording 4-(2-methoxyphenyl)-2-(4-
methoxyphenyl) quinolone (4a) in 85% yield after 15 min at 

80°C. Therefore, 5mol% of PSA was found necessary and 
sufficient for the total completion of the reaction under 
both conventional and ultrasonic conditions.  
 

The superiority of the present methodology over 
some of the recently reported procedures was established by 
comparison of the result obtained with the PSA-catalyzed 
reaction with that of other reported catalysts/systems 
(Table 1 & 2). Comparison of the Catalytic Efficiency of 
PSA with Various Catalysts for the Synthesis of 4a.

 
Table 1: Influence of the catalyst for the synthesis of 4aa 

Entry Catalyst (mol%) 
Conventional Ultrasonic 

Time 
(min) 

Yieldb (%) 
Time 
(min) 

Yieldb (%) 

1 - 160 20 90 45 
2 InF3 (5) 90 35 50 45 
3 CAN-SiO2 (5) 100 30 60 52 
4 ZnCl2-SiO2 (5) 120 40 70 48 
5 MnCl2·4H2O (5) 100 50 60 70 
6 Yb(OAc)3 (5) 110 45 80 55 
7 NbCl5 (5) 80 55 45 65 
8 FePO4 (5) 95 45 60 70 
9 PS/PTSA (5 mol %) 65 70 30 80 
10 MSA(5 mol %) 60 72 30 85 
11 c PSA (5 mol %) 50 81 15 94, 91, 90, 87 
12 PSA (1 mol %) 70 60 30 80 
13 PSA (2 mol %) 60 75 25 85 
14 PSA (10 mol %) 50 81 15 94 

aReaction of ethynylbenzene, (1, 1 mmol), 2-methoxybenzaldehyde (2, 1 mmol) and 4-methoxyaniline (3, 1 mmol) under 
solvent free condition  at 80 °C. bIsolated yields. cCatalyst was reused three times.  
 
Table 2: Screening of various solvent for the synthesis of compound 4aa 

Entry Solvent (5mL) 
Conventional Ultrasonic 

Time 
(min) 

Yieldb (%) 
Time 
(min) 

Yieldb (%) 

1 CH3OH 72 69 38 73 
2 CH3CH2OH 62 72 42 76 
3 i-PrOH 80 58 50 70 
4 CH2Cl2 78 46 48 68 
5 CH3CN 63 71 40 79 
6 Neat 48 85 16 94 

aReaction of ethynylbenzene (1, 1 mmol), 3-methoxybenzaldehyde (2, 1 mmol), 4-methoxyaniline (3, 1 mmol), PSA catalyst 
(5 mol %) at 80 °C. bIsolated yields.  
 

We next studied the effect of solvent on the 
conventional and ultrasonic reaction conducted under the 
“ideal” conditions at 80 °C using 5 mol %PSA with solvent-
free (neat) conditions and in the presence of different 
solvents. The yield of products was lower (Table 2, entries 
1–5) with all solvents relative to solvent-free (neat) 
conditions (Table 2, entry 6). Poor product yields in 
solvent may be due to solvation of the substrates in the 
reaction medium. 
 

The ability to recycle the PSA catalyst was also 
checked by running the same model reaction in three 
additional cycles using recovered PS/PTSA. Use of the 
same PSA catalyst for an initial and three subsequent runs 
gave 4a yields of 94%, 91%, 90% and 87% (Table1, entry 
11). Thus it appears the catalyst can be used multiple times 
without much loss of efficiency.  

 
To establish the generality, various aldehydes, 

amines, and alkynes were subjected to a one-pot reaction 
catalyzed by PSA (Table 3). Under these optimized set of  

 

experimental reaction conditions, the condensation of 
aldehydes (2) with different alkynes and various amines (3a) 
was carried out and obtained a variety of 2,4-disubstituted 
quinolines(4a), and the results were described in Table 3. 
As shown in Table 3, in all cases, with either electron-
donating or electron-withdrawing groups on aldehydes 
reacted smoothly with alkyne and amines in the presence of 
5% PSA at 80 °C to form the corresponding 2,4-
disubstituted quinolines in good to excellent yields without 
formation of any side products.  
 

We have described herein PSA as a new and 
extremely efficient catalyst for synthesis of 2,4-disubstituted 
quinolones by a three-component, one-pot reaction. With 
the increasing concern for need of green synthetic 
procedures, the advantages such as the (i) solvent-free 
reaction, 22 (ii) high yields, (iii) eco-friendly, and (iv) ease of 
product isolation/purification fulfill the triple bottom line 
philosophy of green chemistry23 and make the present 
methodology environmentally benign. The chemical 
structures of all the synthesized compounds were 
characterized by IR, 1H, 13CNMR, and HRMS studies and 
their data are presented in the experimental section. In the 
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1H NMR spectra of compounds 4a-4s, the chemical shifts 
of aromatic hydrogens of the phenyl ring appeared as 
multiplets in the region d 6.22–6.87.[39-43] In 13C NMR 
chemical shifts for compounds 6i were observed in their 
expected regions.[44-47] 
 

CONCLUSION 
In conclusion, we have found an efficient and 

practical procedure for the preparation of 2,4-disubstituted 
quinolines from alkynes and different aromatic aldehydes 
with various aromatic amines in the presence of PSA under 
ultrasound irradiation at room temperature using solvent-
free conditions. Ultrasound irradiation speeds up the 
reaction compared to traditional (reflux) methods and 
provides better yields. This protocol provides the 
advantages of increased yields, shorter reaction times, 
ecofriendly catalyst and easy workup. 
 

MATERIALS AND METHODS 
4-(2-methoxyphenyl)-2-(4-methoxyphenyl) quinoline 
(4a). 
 A mixture of ethynylbenzene (1, 1 mmol), 3-
methoxybenzaldehyde (2, 1 mmol), 4-methoxyaniline (3, 1 
mmol) in the presence of PSA (5 mol %) were placed on a 
25 mL beaker and exposed to ultrasonic irradiation at room 
temperature for appropriate time (Table 3) in solvent-free 
condition. The progress of the reaction was monitored by 
TLC. After completion of the reaction, the mixture was 
washed with chloroform and filtered to recover the catalyst. 
The filtrate was evaporated, and the crude product was 
recrystallized from ethanol to afford pure 4a in excellent 
yields. 
 
Synthesis of Phosphosulfonic acid (PSA) 

25mL reaction flask was equipped with a constant-
pressure dropping funnel and the gas outlet which was 
connected to a vacuum system through an alkali solution 
trap. DHAMP (1 g, 7.5 mmol) was charged into the flask 
and chlorosulfonic acid (2.62 g, ca. 1.5 mL, 22.5 mmol) in 
CH2Cl2 (10 mL) was added drop wise over a period of 15 
min at room temperature. After completion of the addition, 
the reaction mixture was shaken for 2 h, while the residual 
HCl was eliminated by suction. Then the mixture was 
washed with excess of CH2Cl2 and obtained the white 
powder on dried (Scheme 2). 

               
             Scheme 2: Preparation of PSA 

 
4-(2-Methoxyphenyl)-2-(4-methoxyphenyl)quinoline 
(4a): Yellow solid; 1H NMR(500 MHz, CDCl3): δ = 3.79 (s, 
3H), 3.83 (s, 3H), 7.02 (d, 3J = 10.0 Hz, 2H), 7.10-7.14 (m, 
1H), 7.21-7.24 (m, 1H), 7.35-7.39 (m, 2H), 7.49-7.59 (m, 
5H), 7.84-7.86 (m, 1H), 8.13-8.15 (m, 2H),  ppm. 13C NMR 
(75 MHz, CDCl3): δ =55.6, 55.8, 108.8, 111.7, 121.4, 124.3, 
128.3, 128.7, 129.6, 130.2, 131.5, 131.7, 139.2, 145.0, 15.6, 
154.4, 157.1, 157.9 ppm. HRMS: calcd. For 
C23H19NO2[M+H] 342.1416; found 342.1426. 

 
2-(4-Methoxyphenyl)-4-(o-tolyl)quinoline(4b): Yellow 
solid; 1H NMR(500 MHz, CDCl3): δ = 2.45 (s, 3H), 3.80 (s, 
3H), 7.24 (d, J = 10.0 Hz, 2H), 7.29-7.32 (m, 3H), 7.39-7.42 
(m, 1H), 7.48-7.58 (m, 6H), 8.13 (d, J = 10.0 Hz, 1H), ppm. 
13C NMR (75 MHz, CDCl3): δ = 20.6, 55.64, 103.77, 122.9, 
122.9, 126.1, 128.5, 128.8, 129.5, 129.9, 131.0, 131.6, 136.4, 
138.7, 140.6, 144.7, 147.4, 154.7, 157.5 ppm. HRMS: calcd. 
forC23H19NO[M+H] 326.1467; found 326.1476. 
 
4-(4-Isopropylphenyl)-2-(4-methoxyphenyl) quinoline 
(4c): Yellow solid; 1H NMR(500 MHz, CDCl3): δ = 1.29 (d, 
J = 10.0 Hz, 6H), 2.96-2.99 (m, 1H),  3.78 (s, 3H), 7.17 (d, J 
= 3.2 Hz, 1H), 7.35-7.38 (m, 3H), 7.49-7.57 (m, 5H), 8.06 
(d, J = 10.0 Hz, 2H), 8.13 (d, J = 10.0 Hz, 1H), ppm. 13C 
NMR (75 MHz, CDCl3): δ = 24.1, 33.9, 55.8, 103.9, 120.0, 
121.7, 127.1, 127.5, 128.8, 129.5, 131.6, 137.6, 145.4, 150.0, 
158.3 ppm. HRMS: calcd. forC25H23NO[M+H] 354.1780; 
found 354.1786. 
 
2-(3,4-Dimethoxyphenyl)-4-(2-fluorophenyl) quinoline 
(4d): Yellow solid; 1H NMR(500 MHz, CDCl3): δ = 3.86 (s, 
3H), 4.06 (s, 3H), 7.15-7.18 (m,1H), 7.20 (s, 1H), 7.25-7.32 
(m, 1H), 7.36-7.40 (m, 1H), 7.48-7.58 (m, 6H), 7.68 (d, J = 
3.65 Hz, 1H), 8.04-8.09 (m, 1H), ppm. 13C NMR (75 MHz, 
CDCl3): δ = 56.5, 56.3, 103.3, 108.8, 116.5, 121.2, 124.5, 
128.4, 128.8, 129.5, 130.6, 131.4, 138.9, 146.1, 146.8, 150.2, 
152.4 ppm. HRMS: calcd. forC23H18FNO2[M+H] 360.1322; 
found 360.1331. 
 
2-(3,4-Dimethoxyphenyl)-4-(4-nitrophenyl) quinoline 
(4e): Yellow solid; 1H NMR(500 MHz, CDCl3): δ = 3.84 (s, 
3H), 4.06 (s, 3H), 7.15 (s,1H), 7.51-7.55 (m, 6H), 7.67 (m, 
1H), 8.28 (m, 4H), 7.68 (d, J = 3.65 Hz, 1H), 8.04-8.09 (m, 
1H), ppm. 13C NMR (75 MHz, CDCl3): δ = 56.7, 56.9, 
103.5, 109.4, 118.9, 122.5, 124.7, 128.5, 129.5, 129.9, 138.8, 
146.4, 148.6, 152.3, 154.5 ppm. HRMS: calcd. 
forC23H18N2O4[M+H] 387.1267; found 387.1273. 
 
4-(4-Isopropylphenyl)-2-(4-methoxyphenyl)quinoline 
(4l): Yellow solid; 1H NMR (500 MHz, CDCl3): δ = 1.28 (d, 
J = 10.0 Hz, 6H), 2.94-2.98 (m, 1H),  3.84 (s, 3H), 7.05 (d, J 
= 8.5 Hz, 2H), 7.48 (m, 1H), 7.53 (d, J =8.1 Hz, 2H), 7.62-
7.66 (m, 2H), 7.71-7.73 (m, 1 H), 7.82 (s, 1H), 7.96(d, J = 
8.5 Hz, 1H), 8.21-8.26 (m, 2H) ppm. 13C NMR (75 MHz, 
CDCl3): δ = 24.1, 33.9, 55.8, 115.2, 118.9, 126.5, 127.6, 
128.1 128.9, 129.7, 131.1, 131.6, 132.4, 133.6, 135.3, 149.2, 
151.2, 152.7, 157.2, 158.0 ppm. HRMS: calcd. for 
C25H23NO [M+H] 354.1780; found 354.1789. 
 
4-(4-chlorophenyl)-2-(3,4-dimethoxyphenyl) quinoline 
(4m): Yellow solid; 1H NMR (500 MHz, CDCl3): δ = 3.86 
(s, 3H), 4.02 (s, 3H), 7.16 (s, 1H), 7.53-7.57 (m, 6H), 7.64-
7.66 (m, 1H), 8.23-8.26 (m, 4H), 7.72 (d, J = 3.65 Hz, 1H), 
8.01-8.05 (m, 1H), ppm. 13C NMR (75 MHz, CDCl3): δ = 
55.6, 56.2, 104.2, 108.3, 119.6, 123.4, 126.8, 127.4, 129.3, 
129.8, 132.6, 145.6, 147.5, 153.2, 153.4 ppm. HRMS: calcd. 
for C23H18ClNO2 [M+H] 376.1026; found 376.1031. 
 
4-(4-chlorophenyl)-2-(4-methoxyphenyl) quinolone 
(4p): Yellow solid; 1H NMR(500 MHz, CDCl3): δ =3.86 (s, 
3H),7.04 (d, J = 8.5 Hz, 2H),7.23-7.26 (m, 1H),7.36-7.38 (m, 
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2H),7.64-7.69 (m, 2H),7.93 (d, J = 8.5 Hz, 1H),8.02 (d, J = 
7.8 Hz, 1H),8.08-8.14 (m 3H),8.21-8.24 (m, 2H) ppm. 13C 
NMR (75 MHz, CDCl3): δ =55.1, 113.2, 118.1, 120.3, 121.2, 
123.6, 124.5, 125.9, 127.4, 128.2, 128.8, 129.3, 131.2, 134.4, 
139.3, 145.1, 147.3, 148.4, 150.2, 160.4 ppm; HRMS: calcd. 
forC22H16ClNO346.0920 [M+H], Found: 346.0928. 
 
 

4-(4-Fluorophenyl)-2-(4-methoxyphenyl) quinoline 
(4q): Yellow solid; 1H NMR(500 MHz, CDCl3): δ =3.86 (s, 
3H),7.02-7.04 (m, 2H),7.22-7.26 (m, 2H),7.43-7.46 (m, 
3H),7.68-7.70 (m, 1H),7.78 (s, 1H),7.84 (d, J = 8.5 Hz, 
1H),8.22 (d, J = 10.0 Hz, 2H),8.28 (d, J = 8.7 Hz, 1H) ppm; 
13C NMR (75 MHz, CDCl3): δ =55.6, 113.2, 116.4, 116.3, 
118.9, 124.3, 127.3, 128.6, 129.5, 130.4, 131.2, 132.1, 132.9, 
133.0, 133.7, 149.2, 150.5, 161.5, 164.5 ppm. HRMS: calcd. 
forC22H16FNO329.1216 [M+H], Found: 329.1223. 

 
Table 3: One-pot three-component synthesis of 2,4-disubstituted quinolone analogues (4a-4s). 

Entry Product R1 R2 
Time 
(min) 

Yield 
(%) 

Mp (°C) observed (Literature) 

4a 

 

2-Methoxy 4- Methoxy 25 85 152–153 

4b 

 

2-Methyl 4- Methoxy 28 90 138–140 

4c 

 

4-Isopropyl 4- Methoxy 33 81 165–167 

4d 

 

2-fluoro 3,4-dimethoxy 17 88 148–149 

4e 

 

4-nitro 3,4-dimethoxy 31 81 162–163 
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4f 

 

4-tert-butyl 
4-methoxy 
 

38 92 132–134 (133)[48] 

4g 

 

4-methyl 
4-methoxy 
 

26 85 116-118 (115–117)[48] 

4h 

 

4-nitro 4-methoxy 35 90 138–140 

4i 

 

4-tert-butyl 
4-methyl 
 

33 81 120–121 (120)[48] 

4j 

 

-- 
4-methoxy 
 

28 88 76–77(75-76)[49] 

4k 

 

-- 
4-methyl 
 

25 85 116-117 (116-117)[50] 
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4l 

 

4-isopropyl 4-methoxy 34 90 138–140 

4m 

 

4-chloro 3,4-dimethoxy 30 81 125–127 

4n 

 

-- 
3,4-dimethoxy 
 

28 88 143-144 (142–144)[51] 

4o 

 

4-nitro 
4-chloro 
 

24 85 144-145 (145)[48] 

4p 

 

4-chloro 4-methoxy 22 90 138–140 
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4q 

 

4-fluoro 4-methoxy 37 81 125–127 

4r 

 

4-chloro 
4-methyl 
 

20 85 101-102(102–103) [52] 
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