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Abstract: Creatinine is a chemical waste molecule that is generated from muscle metabolism and is 

produced from creatine. The kidneys maintain blood creatinine levels in normal range. Creatinine has been 
found to be a fairly reliable indicator of kidney function. Elevated creatinine level signifies impaired kidney 
function or kidney disease. Since nitric oxide (NO) is produced by three types of Nitric Oxide Synthases 
(NOSs), rapid changes in stable oxidized metabolites (nitrite and nitrate) in the tissues and blood should be 
represented by the amount of stable forms in the serum and may reflect changes in the body. The serum 
samples were collected from the individuals with high levels of creatinine and normal range. Nitrite was 
measured by a Griess reaction while nitrate was measured using the enzymatic one step assay with nitrate 
reductase. The total 36 samples (18 normal range (N) and 18 high creatinine values (H)) were evaluated for 
the NO levels. The age group varies from 6-74 and 20-80 for normal and high level of creatinine 
respectively. The levels of creatinine in the normal range and high values varies from 0.71-0.93 
(mean=0.86+0.01) and 1.59-11.59 (mean=4.34+0.77), respectively. When the nitrite (15.19+1.73 µM versus 
12.84+1.19 µM, P>0.05) and nitrate (24.94+2.60 µM versus 27.76+2.42 µM, P>0.05) levels were compared 
between these groups no significant differences were observed. Results of this study reveal that there is no 
correlation between nitric oxide production and the serum creatinine levels. However, those results are 
preliminary and have to be confirmed in sample of larger size.  
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Introduction 

Nitric oxide (NO) is heat-labile, unstable 
compound and is one of the few gaseous signaling 
molecules known (1). It is involved in many 
physiological and pathological processes within the 
body, both beneficial and detrimental (2,3). 
Appropriate levels of NO production are 
important in protecting organs from ischemic 
damage (4), whereas chronic expression of NO is 
associated with various malignancies and 
inflammatory conditions including juvenile 
diabetes, multiple sclerosis, arthritis and ulcerative 
colitis (5,6). Genetic factors including endothelial 
nitric oxide synthase (eNOS) were implicated in 
pathogenesis of rheumatoid arthritis, and extra-
articular manifestations of rheumatoid arthritis 
were significantly greater among the carriers (7).  
 
Since NO is involved in various pathological states 
and is produced by three types of Nitric Oxide 
Synthases (NOSs), rapid changes in stable oxidized 
metabolites (nitrite and nitrate) in the tissues and 
blood should be represented by the amount of 
stable forms in serum and may reflect vascular 
activities and circulatory or inflammatory changes 
in the body (8). NO is produced in all tissues and 
organs by constitutive NOS (cNOS), which  

 
includes endothelial NOS (eNOS; isoform III) and 
neuronal NOS (nNOS; isoform I) and inducible 
NOS (iNOS; isoform II) (9). Therefore, 
pathophysiological changes such as atherosclerosis 
with coronary artery diseases (10, 11), endothelial 
dysfunction (12), pro-inflammation and 
inflammation seen in various diseases (13-16) may 
be to some extent studied by measuring NO 
metabolites in the peripheral blood (17- 20). 
 
Recent evidence suggests that NO deficiency is 
both a cause and consequence of chronic kidney 
disease (CKD) (21). Clinical data show decreased 
total NO production in patients with CKD and 
end-stage renal disease (ESRD) (22-26). In animal 
models of CKD, renal NO deficiency is evident 
irrespective of the initial insult (27–33) and 
enhanced progression is seen with superimposed 
NO synthase (NOS) inhibition and protection 
with L-arginine supplementation (34, 35). 
Furthermore, chronic NOS inhibition alone leads 
to hypertension, proteinuria, and renal injury (36). 
Within the kidney, loss of the neuronal isoform of 
NOS always associates with injury in multiple 
models of CKD (28-31, 33, 37) and correlates with 
level of damage and declining renal function (38). 
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Kidney failure is considered one of the most 
serious chronic disorders. Though the incidence of 
Chronic Renal Failure (CRF) or kidney disease is 
not as common as Coronary Heart Disease, 
because of the population density and lack of 
adequate healthcare to match there is a constant 
clamor for Dialysis and treatment facilities in 
India. Long term care for kidney disease continues 
to be expensive. Usually the functioning of the 
kidney is determined by the biochemical 
estimation of creatinine. The normal range of 
creatinine in healthy individual is 0.5-1.2 mg/dL. 
Creatinine is a breakdown product of creatine 
which is primarily synthesized in the liver from the 
methylation of glycocyamine by S-Adenosyl-L-
Methionine. It is then transported through blood 
to the other organs, muscle, and brain where, 
through phosphorylation, it becomes the high 
energy compound phosphocreatine. During the 
reaction creatine: phosphocreatine, catalyzed 
by Creatine Kinase, spontaneous conversion to 
creatinine may occur. Creatinine is chiefly filtered 
out of the blood by the kidneys (glomerular 
filtration and proximal tubular secretion). There is 
little or no tubular reabsorption of creatinine. If 
the filtering of the kidney is deficient, creatinine 
blood levels rise. Therefore, creatinine levels in 
blood and urine may be used to calculate the 
creatinine clearance (CrCl), which reflects 
the glomerular filtration rate (GFR). Elevated 
creatinine level signifies impaired kidney function 
or kidney disease. Therefore, we have done a study 
to evaluate the association between serum 
creatinine and NO levels.  
 

Materials and Methods 
Study group 
Serum samples from eighteen subjects (10 females 
and 8 males) having high creatinine values and 18 
individuals (11 females and 7 males) who have 
normal creatinine values were collected from Maha 
Rani Laxmi Bai Medical College, Jhansi, Uttar 
Pradesh and stored at -800 C. Approval for the 
study was obtained from the institutional 
research ethical committee (IEC/IRB No: 
BU/Pharma/032). 
 
Nitrite determination 
Nitrite was measured by using a Griess reaction as 
described elsewhere (39). The results were given as 
μM. 
 
Nitrate determination 
Nitrate was measured using the enzymatic one-
step assay with nitrate reductase. This method is 
based on the reduction of nitrate to nitrite by 
nitrate reductase in the presence of β-NADPH. 
Tubes containing 250 μl of 100 mmol/l potassium 
phosphate buffer (pH 7.5), 50 μl of 12 mmol/l β-
NADPH, and 100 μl sample were equilibrated at 
25◦C. To start the enzymatic reaction, 40 μl of 500 

U/l nitrate reductase was added. The samples were 
incubated for 45min in the dark. The oxidation of 
β-NADPH was monitored in terms of the decrease 
in absorbency at 340 nm. The method of standard 
addition was used to minimize the effect of 
interfering substances from the serum. The results 
are given as μM. Samples with internal standard, 
and serum and reagent blanks were also analyzed. 
 
Statistical analysis 
To compare differences in nitrite-nitrate levels in 
different groups (normal creatinine vs high 
creatinine values), all values were expressed as 
mean ± standard of means (SEM) unless stated 
otherwise. Statistical significance level was set to 
0.05 for all calculations. 
 

Results 
The total 36 samples (18 normal range (N) and 18 
high Creatinine values (H)) were evaluated for the 
NO levels. The age group varies from 6-74 years 
and 20-80 years for normal and high level of 
creatinine respectively. The levels of Creatinine in 
the normal range and high values varies from 0.71-
0.93 %mg (mean=0.86+0.01) and 1.59-11.59 %mg 
(mean=4.34+0.77), respectively. When the nitrite 
(15.19+1.73 µM vs 12.84+1.19 µM, P>0.05) and 
nitrate (24.94+2.60 µM vs 27.76+2.42 µM, 
P>0.05) levels were compared between these 
groups no significant differences were observed 
(Fig. 1 and 2).  
 

 
Figure 1:  Serum levels of Nitrite in subjects with 
normal and high values of creatinine 
 
 

 
Figure 2:  Serum levels of Nitrate in subjects with 
normal and high values of creatinine 
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Table 1:  Age, Sex, and Serum levels of Nitrite and 
Nitrate in subjects with normal and high values of 
creatinine with respect to individuals.    

Normal values of creatinine 

S.No. Age Sex 
Creatinine 

value 
(% mg) 

Nitrite 
(μM) 

Nitrate 
(μM) 

1 74 M 0.91 12.56 26.93 
2 25 F 0.86 17.37 29.18 
3 14 M 0.91 14.31 22.75 
4 42 F 0.91 29.06 28.68 
5 40 F 0.88 11.87 23.37 
6 17 F 0.80 11.25 18.18 
7 70 F 0.83 38.18 65.00 
8 30 F 0.82 17.93 25.62 
9 30 F 0.71 11.37 16.75 
10 42 F 0.91 9.25 19.62 
11 30 F 0.90 11.62 16.18 
12 10 F 0.80 13.00 22.31 
13 41 M 0.90 9.93 16.93 
14 30 M 0.83 11.06 18.00 
15 25 F 0.89 11.12 23.37 
16 25 F 0.88 17.68 33.12 
17 6 F 0.93 14.37 21.81 
18 36 F 0.92 11.56 21.06 

High values of creatinine 

1 75 F 3.53 10.68 22.62 
2 75 F 3.33 8.87 21.43 
3 45 F 11.59 18.25 50.81 
4 45 F 4.49 25.81 56.25 
5 45 M 3.85 11.18 21.56 
6 35 F 1.63 20.75 27.75 
7 45 F 6.15 11.75 30.00 
8 37 F 1.59 7.50 18.06 
9 32 M 2.38 8.43 23.12 
10 80 M 2.14 20.06 36.75 
11 45 M 1.70 13.81 20.56 
12 40 F 2.01 9.75 24.68 
13 65 F 1.91 12.68 24.68 
14 40 M 10.39 11.56 22.87 
15 66 M 8.3 9.31 25.62 
16 20 F 2.01 10.0 24.50 
17 50 M 8.70 9.87 22.62 
18 40 M 2.47 10.87 25.75 

 

Discussion 
Total NO production can be assessed using the 
stable oxidation products of NO (NO2+NO3 = 
NOX), although this is only valid under conditions 
of dietary NOX control (41). It has been suggested 
that the physiologically important vasodilator nitric 
oxide (NO) is deficient in chronic progressive 
renal disease (CRD) and in end-stage renal failure 
(ESRD) (42, 43). This could result from substrate 
(arginine) deficiency (27) caused by a loss of 
functional renal mass, increased endogenous NO 
synthase (NOS) inhibitors that accumulate in renal 
failure (43), and/or other causes, such as increased 
oxidative stress (44). In addition to being caused 
by CRD, low NO production may contribute to 
and/or exacerbate the progression of CRD by 
both hemodynamic and renal growth-promoting 
actions (45). Wever et al., (26) also concluded that 
NO production was decreased in humans with 
CKD. Most evidence suggests decreased total NO 
production in humans with renal disease, although 
there is one report of increased arginine-to-
citrulline conversion in humans with ESRD (46). 
This might reflect activation of inducible NOS 

(iNOS) by dialysis in this particular population. In 
the absence of acute inflammatory events, 
decreased total NO production (measured by 
urinary NOx output) has also been reported in 
different animal models of CKD, including renal 
mass reduction, chronic glomerulonephritis, 
chronic puromycin amino nucleoside (PAN) 
nephritis, and normal aging (27, 29, 30, 33, 34, 37, 
39). 
 
NO plays a critical role in many vital biological 
processes, including the control of vascular tone, 
neurotransmission, ventilation, hormone secretion, 
inflammation and immunity. Moreover, NO has 
been shown to influence a host of fundamental 
cellular functions, such as RNA synthesis, 
mitochondrial respiration, glycolysis and iron 
metabolism. Moreover, impaired NO production 
has been implicated in the pathogenesis of 
volume-dependent hypertension. This duality of 
NO’s beneficial and detrimental effects has created 
extraordinary interest in this molecule and the 
need for a detailed understanding of NO 
biosynthesis (47).  
 
Although it has been suggested that NO may be 
important in the pathophysiology of chronic renal 
diseases, the precise molecular mechanisms 
involved have not been elucidated. Impaired NO 
synthetic pathway could have a key role in 
modulating the complex renal hemodynamic 
disorders associated with the progression of renal 
diseases. Data are also available showing, the drugs 
capable of enhancing renal NO activity may be 
protective in a variety of renal diseases (48). As a 
molecule with myriad of activities, NO has many 
physiological and pathophysiological implications 
for the renal patient. NO is actively produced in 
the medulla and the cortex of the kidney. Under 
conditions, it is synthesized mainly by eNOS and 
nNOS, and is important for regulating 
microcirculation and inhibiting platelet adhesion 
(49, 50). 
 
Localization of NOS activity in the kidney were 
based on indirect evidence for biosynthesis 
obtained by measurement of nitrite, nitrate and 
cGMP levels; specificity for NOS can be assessed 
by L-arginine dependent activation, cytokine and 
endotoxin stimulations and or selective 
pharmacologic inhibition with structural 
analogoues L-arginine (51, 53). From these it was 
suggested that renal NO production was not only 
derived from endothelial cells, but also from 
smooth muscle cells, mesangial cells, and tubular 
epithelial cells. 
 
NO is involved in renal physiology and 
pathophysiology. Endothelium derived NO may 
relax vascular smooth muscle by activation of 
soluble guanylatecyclase, which leads to 
intracellular accumulation of cGMP (54). 
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Pharmacologically, the enzymatic synthesis of NO 
can be inhibited by the structural analogues of L-
Arginine, leading to an increase in renal vascular 
resistance and a decrease in the renal blood flow, 
urine flow and sodium excretion (55). NO has an 
important role in the local regulation of glomerular 
arteriolar resistance. Imig and Roman (56) 
suggested that NO primarily alters afferent 
vascular tone, thereby modifying the ability of the 
pre-glomerular vasculature to autoregulate 
glomerular capillary pressure. Similarly, Deng and 
Baylis (57) stated that local NO controls afferent 
arteriolar resistance, whereas efferent resistance is 
not under tonic control by NO. Endogenous NO 
may selectively modulate afferent arteriolar 
angiotensin II actions. It reacts with renin-
angiotensin system to control glomerular arteriolar 
resistance. NO counteracts elevated angiotensin II 
levels to regulate perfusion of the kidney (58). It 
has been proposed that NO is involved in 
mediating the myogenic response of 
autoregulation (58). The presence of NOS I in the 
macula densa was thought to be related to the 
macula densa dependent release of rennin (59).NO 
may participate in the tubular effects that regulate 
the pressure natriuresis and diuresis in response to 
volume changes (60). It appears that NO 
contributes to renal volume control via a tubular 
effect, possibly by directly influencing tubular 
reabsorption (61). 
 
It has been suggested that a deficiency in the 
synthesis of NO may constitute an important 
factor in the development of systemic 
hypertension, as NO interferes with the ability of 
the kidney to excrete sodium and water and 
because NO is thought to mediate the renal 
responses to volume expansion. NO blockade 
causes reduction of sodium excretion (62). There 
is evidence indicating that renal NO deficiency 
occurs in patients with CRF. Significant reduction 
of thus daily excretion of urinary nitrate/nitrite 
was significantly lower in patients with moderate 
and severe renal failure, as compared to those with 
mild renal failure and controls; the lowest values 
were found in severe renal failure group has been 
reported (22). Elevated serum NO could at least in 
part be due to the declining renal function, due to 
its increased endogenous production by the 
kidneys, could be largely be due to in situ 
production during dialysis. 
 
This study would therefore be useful to determine 
if there are any changes in the levels of NO in 
individuals who have high levels of creatinine. We 
evaluated the levels of nitrite and nitrate in the 
serum and we could not found any correlation 
between nitric oxide and creatinine levels. Our 
study has been supported by the previous study by 
Ochoa et al and Evans et al., (63, 64). There is not 
much study has been done to explore the 
association between serum nitric oxide and 

creatinine levels. Further, detailed study is required 
to explore the role of nitric oxide in different 
clinical stages of renal diseases. 
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