SCREENING OF Serratia marcescens ISOLATED FROM SOIL FOR SECONDARY METABOLITES OF THERAPEUTIC IMPORTANCE

Kritika K* and Geetha Ramani D

Department of Microbiology and Bioinformatics, CMS college of science and commerce, Coimbatore, India
Department of Microbiology Dr.N.G.P College of arts and science, Coimbatore, India

Received for publication: February 28, 2013; Revised: April 09, 2013; Accepted: May 21, 2013

Abstract: Microorganisms are known to produce pigments. The pigments produced by bacteria have received the attention of many investigators. Soil isolates obtained in our campus produced a pink to red color pigment when grown on nutrient agar. This isolate was identified as Serratia marcescens by MALDI – TOF mass spectrophotometer. The pigment was extracted and identified to be Prodigiosin. GC-MS analysis of the methanol fraction of the culture filtrate of Serratia sp reveals the production of various alkaloids of therapeutic importance. To the best of our knowledge this is the first report on the production of these compounds by Serratia marcescens.

Keywords: Serratia marcescens, Maldi-TOF, Prodigiosin, Therapeutic Products.

INTRODUCTION

Biopigments can be obtained from two major sources, plants1 and microorganisms. Biopigments from the microorganisms have been preferred over those from plants because of their rapid growth and their availability throughout the year because of the cultivation technology14. Serratia is a Gram negative bacterium and belongs to Enterobacteriaceae family. Serratia marcescens was differentiated from other enteric bacteria due to its characteristic red pigmentation. However many species of Serratia are non-pigmented or vary widely in pigmentation. Other well-known species include S. odorifer, S. liquefaciens, S. rubidae, S. ficaria, S. pyoethica and S. fonticola. Serratia marcescens produces a cell-associated pigment called prodigiosin9, which gives it the appearance of tiny blood red droplets on suitable growth media. Factors such as medium composition and oxygen supply, affect the production of prodigiosin and the incubation at 37°C inhibit the pigmentation. Many types of differential and selective media have been developed for the isolation and presumptive testing of Serratia. It occurs in water and soil, on plant, in insects and in man and animal6.

Prodigiosin is found to act against pathogenic bacteria, fungi, and parasites. It is a good immunosuppressive and anticancer agent. It is produced by S. marcescens, Pseudomonas magneslorubra, Vibrio psychrophaethrus etc.7 The prodigiosin group of natural products is a family of tripyrrole red pigments that contain a common 4-methoxy, 2-bipyrrrole ring system. The biosynthesis of the pigment is a bifurcated process in which mono and bipyrrole precursors are synthesized separately and then assembled to form prodigiosin10.

*Corresponding Author:
Dr. Kritika K,
Department of Microbiology and Bioinformatics,
CMS college of science and commerce,
Coimbatore, India

MATERIALS AND METHODS

Isolation and identification of Serratia sp.

Soil samples were obtained from the garden of CMS college, Coimbatore. The sample was subjected to serial dilution and plating on nutrient agar at 30°C to screen for the pigment producing strains. The red pigment producing isolate thus obtained was then subjected to morphological, biochemical and MALDI-TOF analysis for identifying the organism.

Production of pigment in nutrient broth:

The nutrient broth was prepared and inoculated with the isolated strain and incubated at 30°C in a orbital shaker at 210 RPM for 24 hrs.

Pigment extraction:

The nutrient broth inoculated with the isolated organism was observed for the pigment production. The culture broth was centrifuged at 10,000 rpm for 10mts. The supernatant was discarded and the pellet was suspended in 95% methanol to extract the pigment from the cells. The suspended pellet was centrifuged at 10,000 rpm for 10mts. Debris was removed and the supernatant was taken in two test tubes. The content of one of the test tube was acidified with a drop of concentrated hydrochloric acid and the other was alkalinized with a drop of concentrated ammonia solution. A red or pink color in the acidified solution and a yellow or tan color in the alkalin solution indicated a positive, presumptive test for prodigiosin9.

Estimation of Prodigiosin

Isolated prodigiosin was estimated using the following equation.10

\[\text{Prodigiosin (mg/mL)} = \frac{\text{Absorbance at 560 nm}}{\text{Dilution Factor}} \]
Prodigiosin unit/cell = \[
\frac{[OD_{499} - (1.381 \times OD_{620})] \times 1000}{OD_{620}}
\]

OD 499 – pigment absorbance
OD620 – bacterial cell absorbance
1.381 – constant

Table 1: List of therapeutically important secondary metabolite produced by S. marcescens

<table>
<thead>
<tr>
<th>S.no</th>
<th>Name of the compound</th>
<th>Molecular formula</th>
<th>Molecular weight</th>
<th>Retention time</th>
<th>Therapeutic Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Imidazole [\text{[1,2-c]}\text{quinazoline (cas)}</td>
<td>C_{10}H_{7}N_{3}</td>
<td>169</td>
<td>3.22</td>
<td>Inhibition of ADP-induced platelet aggregation 48</td>
</tr>
<tr>
<td>2)</td>
<td>Daurisoline</td>
<td>C_{37}H_{42}N_{2}O_{6}</td>
<td>610</td>
<td>20.07</td>
<td>bis-benzylisoquinoline alkaloid – The antiarrhythmic effect 19</td>
</tr>
<tr>
<td>3)</td>
<td>Temuconine</td>
<td>C_{37}H_{42}N_{2}O_{6}</td>
<td>610</td>
<td>20.07</td>
<td>Antiplasmodial and cytotoxic activity – bisbenzylisoquinoline alkaloids 20</td>
</tr>
<tr>
<td>4)</td>
<td>(Ethoxycarbonylmethyl) caffeine</td>
<td>C_{12}H_{16}N_{4}O_{4}</td>
<td>280</td>
<td>26.92</td>
<td>Anticancer 31</td>
</tr>
<tr>
<td>5)</td>
<td>Koumidine</td>
<td>C_{19}H_{22}N_{2}O</td>
<td>294</td>
<td>34.82</td>
<td>Cinchonine drug – Chinese medicine 52</td>
</tr>
<tr>
<td>6)</td>
<td>Corydione</td>
<td>C_{20}H_{15}NO_{6}</td>
<td>365</td>
<td>36.78</td>
<td>1) Lower blood sugar levels 2) Decreasing fat storage 3) Antibacterial and anti-inflammatory effects</td>
</tr>
<tr>
<td>7)</td>
<td>Loperamide</td>
<td>C_{29}H_{33}ClN_{2}O_{2}</td>
<td>476</td>
<td>38.71</td>
<td>4) Potential anticancer (anticarcinogenic) activities: Inhibit the growth of SC (skin cancer) cell 53</td>
</tr>
</tbody>
</table>

GC-MS Analysis: GC–MS analysis was performed with reversed-phase (RP) chromatography by using a solvent system of methanol and the carrier gas He with flow 1.0ml/min. This analysis is carried out with THERMO MS DSQ II.

Fig. 1: Growth of serratia in nutrient agar

Fig. 2: pigment production in nutrient broth

Fig. 2: pellet formation after centrifugation

Fig. 3: presumptive test for prodigiosin
RESULTS AND DISCUSSION

The soil isolated from the garden at our campus gave a red coloured colonies which was identified as Serratia sps., by biochemical tests and the organism is more confirmed as S. marcescens by the protein profiling carried out by MALDI-TOF mass spectrophotometry (fig.1). The pigment production is observed only after 24-48 hrs of incubation (fig.2) and the intensity of the color increased upon prolonged incubation which exactly matches with the results.

The presumptive test for prodigiosin shows the red and yellow colour in acidic and alkaline condition (fig .3) which coincides with the study of Giri et al., 2004. The pigment production was enhanced when the nutrient broth was supplemented with 1% of glycerol in the medium. Which exactly matches with the results (Giri et al., 2004)

It has been discovered that prodigiosin possesses antibacterial, antifungal, antiprotozoal, cytotoxic, anti-tumor, antimalarial, antidiabetic, and anti-inflammatory properties. Surprisingly the crude methanol extract when subjected to GC-MS analysis it revealed many other biologically important compounds in it. (Table.1). The crude methanol extracts which is analysed by GC-MS shows most of the compounds are alkaloids and are of high therapeutic properties. These alkaloids and quinoline compounds from other sources have been studied earlier for antimicrobial properties and potent anticancer property. To the best of our knowledge and literature survey, this is the first study to report the production of such products from S. marcescens. The therapeutically important secondary metabolites reported to be produced by S. marcescens reflect a new area of interest in chemical and pharmaceutical research.

Abbreviations Used:

MALDI-TOF: Matrix-assisted laser desorption ionization time-of-flight mass Spectrometry
GC-MS: Gas chromatography–mass spectrometry
RPM: Revolutions per minute
He: Helium gas
OD: Optical density

REFERENCES

21. shodhganga.inflibnet.ac.in/bitstream/10603/2375/.../12_chapter3.pdf
22. xlink.rsc.org
23. Encyclopedia of traditional Chinese medicines
24. www.mims.com

Source of support: Nil
Conflict of interest: None Declared