Isolation and identification of IAA producing endosymbiotic bacteria from *Gracilaria corticata* (J. Agardh)

Ila hi Shaik¹, P. Janakiram², Sujatha L.², Sushma Chandra³

¹Department of Marine Living Resources, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, India.
²Department of Microbiology, ³Department of Biochemistry,
Gayatri Vidyaparishad Degree College (Autonomous), Visakhapatnam 530 017, Andhra Pradesh, India.

Received: September 16, 2016; **Revised:** October 11, 2016; **Accepted:** November 21, 2016

Available online: 1st December 2016

Abstract: Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from *Gracilaria corticata* and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml, 89.40 µg/ml and 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.

Key words: IAA- Indole acetic acid; PGR- plant growth Regulators; TLC- Thin layer chromatography

Introduction

The phytohormone indole-3-acetic acid (IAA) is the most commonly occurring naturally produced and extensively studied plant growth regulator (Kloepfer and Schrot 1978) it is a product of L-tryptophan metabolism of microorganisms. 80% of rhizospheric bacteria produces IAA (C. L. Patten and B. R. Glick, 1996). IAA directly influences several physiological processes in plant growth and development including the induction and regulation of cell division, root extension, vascularization, apical dominance, seed dormancy, fruit ripening and abscission (P.J. Davies, 2004, J.K. Vessey, 2003, Aloni et al., 2006, M. Kelen, 2004) Present study focus on isolation, identification of IAA producing endosymbiotic bacteria from marine macro algae *Gracilaria corticata*. These bacterial strains can be exploited as biofertilizers to improve the crop productivity in saline soils and also we can reduce the use of chemical fertilizers.

Seaweed associated bacteria were initially identified only based on morphological and biochemical tests (Berland et al., 1972; Laycock, 1974; Shiba & Taga, 1980). Johannes Reinke (1903) for the first time demonstrated a true symbiotic association between seaweed and bacteria Johannes Reinke (1903) for the first time demonstrated a true symbiotic association between seaweed and bacteria. IAA is the most abundant member of the auxin family of phytohormone (Bartel, 1997). Fries (1975) reported that bacteria living on *Enteromorpha spp.* showed capacity to convert tryptophan into IAA. Roseobacter group associated with red seaweed caused a gall formation in *Prionitis lanceolata* due to over production of IAA in comparison to other thallus (Ashen & Goff, 2000). Molecular mechanism of IAA production from seaweed associated bacteria is not well understood. But, it can predict a molecular mechanism of IAA production from seaweed associated bacteria, based on the reports from those bacteria which are associated to higher plants.

Material and Methods

Study area: Visakhapatnam located on the east coast of India between the latitudes 17° 14' 30" N and 17° 0' 45" N and the longitudes 83° 16' 25" E and 83° 21' 30" E. The red alga *Gracilaria corticata* (A.V.S.S.Sambamurthy, 2005) were collected at intertidal regions of the Mangamma vari peta beach and Thotla konda beach where anthropogenic activity is less. Sample collection was done during the lowest tide time according to the tide time table provided by the NIO, Visakhapatnam. Sample collection was done one time in November, 2014.

Sample collection:
The whole plant of *Gracilaria corticata* (A.V.S.S.Sambamurthy, 2005) was collected at the intertidal regions the samples were carefully scrapped from substratum by using a sterile knife. Collected samples (100 g) were transferred in ice packed zip-lock bags. Fresh healthy plant with no

Corresponding Author:
Mrs. Ila hi Shaik,
Department of Biochemistry,
Gayatri Vidyaparishad Degree College (Autonomous),
M.V.P.Colony, Visakhapatnam 530 017,
Andhra Pradesh, India.

E-mail: ilahimohammadi@gmail.com

http://dx.doi.org/10.21746/ijbio.2016.12.0012
sign of injury were washed with sterile seawater and processed 24 hours for isolation of associated bacteria. The algal surface sterilized with disinfectant solution containing 2% Sodium hypochlorite and 0.1% Tween 20. Samples were rinsed thoroughly with sterile Milli-Q water to remove disinfectant.

Isolation of endosymbiotic bacteria:
The *Gracilaria corticata* sample was prepared by grinding the seaweed in sterile mortar and pestle. Isolation of endosymbiotic bacteria was done by serial dilution method. 0.1 ml ground seaweed suspension of each dilution was spread over Zobell marine agar medium (HiMedia, India), Peptic digest of animal tissue 5 g/l, Yeast extract 1 g/l, Ferric citrate 0.1 g/l, Sodium chloride 9.45 g/l, Magnesium chloride 8.8 g/l, Sodium sulphate 3.24 g/l, Calcium chloride 1.8 g/l, Potassium chloride 0.55 g/l, Sodium bicarbonate 0.16 g/l, Potassium bromide 0.08 g/l, Strontium chloride 0.034 g/l, Boric acid 0.022 g/l, Sodium silicate 0.004 g/l, Sodium fluoride 0.0024 g/l, Ammonium nitrate 0.0016 g/l, Disodium phosphate 0.008 g/l, Agar 15 g/l Plates were incubated at 29°C for 1 to 6 weeks. Pure cultures were obtained by streaking morphologically different colonies on the Zobell marine agar medium. For further analysis cultures were preserved in Zobell Marine agar broth with 20% glycerol and stored at -20°C. To know the validity of Surface sterilization tissue which were surface sterilized soaked in 5 ml sterile Milli Q and kept for 1 min and then Milli Q (500 μl) distil water was spread onto Zobell Marine Agar and incubated for 7 days at 29°C. No bacterial growth was observed on the plate which is an indicative of effective surface sterilization. (Mirshiba et al., 2010, Polpass rose et al., 2013).

Hydrographic Parameters:
Immediately after the collection of the sample Temperature and pH of the sea water is checked. Salinity of the sea water is identified by Knudsen (Barnes, 1959) method. Dissolved Oxygen is estimated by Winlnder’s method (APHA, 1971).

Identification of isolated bacteria
Selected bacterial isolates were identified by colony morphology, microscopic examination and biochemical characterization was done by following Bergey’s Manual of Determinative Bacteriology (Bergey, 2009) by performing tests such as catalase, oxidase, indole, methyl red, vages prosker, citrate utilization, starch hydrolysis, carbohydrate fermentation i.e. glucose, sucrose, mannitol and lactose etc., and urea utilization

Preliminary screening of bacterial isolates for IAA production:
Test for production of Indole acetic acid: *In vitro* auxin production by isolated marine bacterial strains were determined in the presence of precursor L-tryptophan (Brick et al., 1991) Strains were grown in 100 ml Yeast malt Dextrose broth ((HiMedia, India) (Peptic digest of animal tissue 5 g/l, Yeast extract 3 g/l, Malt extract 3 g/l, Dextrose 10 g/l) each 250 ml Erlenmeyer flask are supplemented with L-tryptophan (1000 μg ml-1). The flasks were inoculated with 100 μl of bacterial cell suspension adjusted to an optical density of 10^3 °CFU/ml. All inoculated flasks (in triplicate) were incubated at 30 ± 2°C for 72 h at 120 rev/min. After incubation, centrifugation was done at 2300 × g for 15 min to remove cells and prepare a cell free extract. 2 ml of Cell free extract was mixed with 4 ml of Salkowski’s reagent (50 ml, 35% perchloric acid, 1 ml 0.5M FeCl3 solution) to determine auxin production in bacterial culture supernatant (Ali et al., 2009a).

Quantitative assay of IAA production: Cultures were grown for 3 days in YMD broth, the 72 hours old cultures were centrifuged at 10,000 rpm for 10 minutes and cell free extract was collected. 2 ml of Cell free extract was mixed with 4 ml of Salkowski’s reagent and kept in dark for 30 minutes. Simultaneously A Blank was setup with Salkowski’s reagent (50 ml, 35% perchloric acid, 1 ml 0.5 N FeCl3 solution) (Brick et al., 1991) and water (4+2 ml). For calibration ELICO UV Vis Spectrophotometer is used. The test samples were read at 530 nm for absorbance (OD). To calculate the actual quantity of IAA OD values were compared with a standard graph made from standard IAA and concentration of IAA produced was expressed in μg/ml.

Standard IAA graph (Gordon and Weber 1951)
Standard graph of IAA was prepared with different IAA concentrations in aqueous solution of IAA ranging from 3.125 μg/ml to 100 μg/ml. To each 2 ml of the standard, 4 ml of 2% 0.5 M FeCl3 in 35% perchloric acid i.e. Salkowski reagent is added and incubated for 30 minutes. After 30 minutes readings were read at 530 nm by UV-Visible spectrophotometer SL Elico 159. Standard graph is prepared by plotting concentration of IAA in μg/ml Vs Optical Density at 530 nm.

Identification of IAA by Thin layer chromatography:
To identify the IAA in culture filtrate cell free filtrate was prepared by centrifuging the 72 hours aged mass culture at 10,000 rpm for 10 minutes. The culture filtrate was mixed with equal volume of ethyl acetate, and then solvent separation was done in separating funnel the solvent layer was concentrated in a rotavapor. TLC was performed with the extracted ethyl acetate fraction of crude compounds using pre-coated silica gel TLC plates of grade Silica gel GF 254, thickness 0.25 mm, (Merck, Germany) to detect IAA produced by the bacterial isolates. The crude extract was spotted with capillary tube and solvent front was allowed

http://dx.doi.org/10.21746/ijbio.2016.12.0012
to run for approximately 80% of the plate. The crude was eluted with butanone-ethyl acetate-
ethanol-water (3:5:1:1) solvent system (Ahmad et al., 2005, Harinaran Harikrishnan et al., 2014). Spots with Rf values coincide with that of authentic IAA were identified under UV light (254 nm) after the movement of the solvent up to the solvent front, the bands in the TLC were identified after soaking in Iodine. (M. Jayaprakashvel et al., 2014). Retention factor was calculated according to the standard formulae as follows,
Retention factor = Distance travelled by Solute/Distance travelled by the Solvent.

Results and Discussion

Gracilaria corticata, (*Rhodophyta*) is a marine red seaweed profusely grow at the intertidal regions of the sea. Seaweeds provide substratum for colonization of bacteria which are beneficial to complete their life cycle and for the morphogenesis of seaweeds (Armstrong et al., 2000 Delbridge et al., 2004; Burke et al., 2011a; Singh et al., 2011a, b, c). In the present study six endosymbiotic bacteria are isolated from the *G. corticata* on Zobell marine agar (Fig.1). Morphology, biochemical characters of six bacterial strains GM1, GM2, GM3, GM4, GM5 and GM6 (Table-1) are studied out of six bacteria five are gram-ve rod shaped bacteria, GM6 is gram +ve bacilli. Fifty-three bacterial isolates were isolated by R.P.Singh et al., from naturally collected thalli of *Ulva fasciata*, *U. taeniata*, *U. lactuca*, *Gracilaria corticata*, *G. dura*, and *G. salicornia* from the coast of Veraval out of which 18 from Gracilaria spp. Out of 18 five from *G. corticata*. Production of IAA is the trait of the rhizospheric bacteria but the studies revealed that seaweed associated marine bacteria produce plant growth regulators (PGRs) (Maruyama et al., 1986, 1988, 1990; Mooney and Van,1986), indol-3-acetic acid (IAA; Provasoli & Pinter,1953; Singh et al., 2011b) and other PGRs and vitamins(Provasoli & Carlucci, 1974) which are effective in inducing the morphogenesis in *Ulva* spp. (Fries & Aberg, 1978; Bradley, 1991; Spoermer et al., 2012) Nayomi John & M Thangavel, 2015 isolated 25 marine bacteria in that 14 strains producing IAA in presence of L-tryptophan. Phytohormone IAA works as a signal molecule in the regulation of plant development. Plant system uses auxin like hormones for their optimal growth.

Figure 1: Isolated cultures

Table 2: Biochemical identification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MG-1</th>
<th>MG-2</th>
<th>MG-3</th>
<th>MG-4</th>
<th>MG-5</th>
<th>MG-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Smooth</td>
<td>Smooth</td>
<td>Smooth</td>
<td>Smooth</td>
<td>Smooth</td>
<td>Dull</td>
</tr>
<tr>
<td>Size</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Medium</td>
</tr>
<tr>
<td>Color</td>
<td>Cloudy</td>
<td>Cloudy</td>
<td>Cloudy</td>
<td>Cloudy</td>
<td>Cloudy</td>
<td>Cloudy</td>
</tr>
<tr>
<td>Form</td>
<td>Circular</td>
<td>Circular</td>
<td>Circular</td>
<td>Circular</td>
<td>Circular</td>
<td>Irregular</td>
</tr>
<tr>
<td>Texture</td>
<td>Mucoid</td>
<td>Mucoid</td>
<td>Mucoid</td>
<td>Mucoid</td>
<td>Mucoid</td>
<td>Mucoid</td>
</tr>
<tr>
<td>Elevation</td>
<td>Raised</td>
<td>Raised</td>
<td>Raised</td>
<td>Raised</td>
<td>Convex</td>
<td>Convex</td>
</tr>
<tr>
<td>Margin</td>
<td>Entire</td>
<td>Entire</td>
<td>Entire</td>
<td>Entire</td>
<td>Entire</td>
<td>Undulate</td>
</tr>
<tr>
<td>Gram stain</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve bacilli</td>
</tr>
<tr>
<td>Shape</td>
<td>rod shape</td>
<td>rod shape</td>
<td>rod shape</td>
<td>rod shape</td>
<td>rod shape</td>
<td>rod shape</td>
</tr>
<tr>
<td>Salt 0 %</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salt 3 %</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salt 6 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Salt 8 %</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salt 10 %</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salt 12 %</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Indole</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Methyl red</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Voges prosecur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gelatin</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Tween 80</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Iron</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Starch</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Amino acids utilization tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ornithine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arginine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lysine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrate utilization tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffinose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

http://dx.doi.org/10.21746/ijbio.2016.12.0012

pg. 5181
Sucrose + - - - - +
Lactose + + - - + + +
Maltose + + + + + + -
Trehalose + + + + + + +
Cellodiose + + + + + + +
Melibiose - - + + + + -
Ribose - - - - - - +
Arabinose - - - - - - -
Xylose + + - - - - -
Rhamnose - - - - - - -
Mannose + - + + + + +
Galactose + - - - - - +
Sugar alcohol utilization tests
Fructose + + - - - - +
Adonitol - - - - - - -
Mannitol + + + + + + +
Sorbitol - - + + + + +
Dulcitol - - - - - - +

<table>
<thead>
<tr>
<th>TCBS</th>
<th>Milky Yellow color growth</th>
<th>Milky Yellow color growth</th>
<th>Milky Yellow color growth</th>
<th>Milky Yellow color growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Positive</td>
<td>+</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>-</td>
<td>Negative</td>
<td>-</td>
<td>Negative</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: Concentration of IAA produced by bacteria GM1-GM6 isolated from G. carticata

<table>
<thead>
<tr>
<th>Bacterial isolate</th>
<th>Concentration of IAA (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM1</td>
<td>35.35 ± 0.41</td>
</tr>
<tr>
<td>GM2</td>
<td>17.16 ± 0.18</td>
</tr>
<tr>
<td>GM3</td>
<td>102.45 ± 0.39</td>
</tr>
<tr>
<td>GM4</td>
<td>38.40 ± 0.36</td>
</tr>
<tr>
<td>GM5</td>
<td>89.40 ± 0.17</td>
</tr>
<tr>
<td>GM6</td>
<td>109.43 ± 0.08</td>
</tr>
</tbody>
</table>

Values are tabulated as means ± the standard error of the mean (SEM) and N=3.

Fig.3: Standard graph of IAA (concentration of IAA on X-axis vs O.D value at 530nm on Y-axis)

By plotting the concentration of IAA against O.D. a straight line was constructed the straight-line equation was represented on the graph.
Fig. 5: IAA Thin layer chromatography of the bacterial isolates GM3, GM5 and GM6

R_f values of the GM3, GM5 and GM6 were calculated by using the formula.

R_f value = the distance travelled by solute/the distance travelled by the solvent.

The R_f values of the GM3, GM5 and GM6 are compared with the standard IAA, R_f value.

Same findings are observed in the recent study that six bacteria (GM1…GM6) which are isolated has formed pink to red color with salkwoski reagent which indicates that they are capable of IAA production. (Fig.2). The amount of IAA produced is estimated from standard graph (fig.3). Mary Francesca et al., 2016 screened marine bacteria for the production of IAA the amount of IAA produced is quantified in which strain Tb3 showed maximum production of IAA (14.35 µg/ml) of all the strains Bh2 showed minimum IAA (6.05 µg/ml) in our study the maximum amount is produced by the GM6 (109 µg/ml) and minimum amount by GM2 (17.16 µg/ml). GM3 and GM5 also produced significant amount of IAA 102 µg/ml and 89.40 µg/ml. GM1& GM4 produced 35.35 µg/ml and 38.40 µg/ml which is an indicative that these bacteria are more potential to produce the IAA. The studies of Singh R.P. et al., 2011 showed that three strains isolated from G. corticata the B. pumilus, B. licheniformis and E. homiens produced 445.5, 335 and 184.1 µg/ml IAA which supports our study that symbiotic bacteria are best IAA producers. Bacteria can synthesize IAA through six different pathways namely, indole-3-acetamide (IAM), indole-3-pyruvic acid (IPA), tryptamine (TAM), indole-3-acetonitrile (IAN), tryptophan side-chain oxidase (TSO) and tryptophan independent pathways, a high degree of similarity between biosynthesis of IAA in plants and bacteria has been reported (Spaepen S. et al., 2007, Patten, C. L. and Glick, B. R. 1996) an amino acid, tryptophan, is identified as the main precursor for IAA biosynthesis in bacteria. The identification of IAA can be done by TLC by comparing the RF values of the IAA produced by culture filtrates with standard IAA RF value (2014, Ahmad et al., 2005, Haritharan Harikrishnan et al., 2014 Suthinhan Khamna et al.,) The chromatogram of the GM3, GM5 & GM6 culture filtrate showed the near RF values with the standard IAA value (0.58cm) (fig.5). The results support and confirms the production of IAA by the above bacterial strains.

Conclusion

Study of these bacterial strains for the production of PGR can be an effective tool to improve the crop productivity these can be used as bio fertilizers in saline soils and also minimize the use of chemical fertilizers. To increase of agriculture, yield in sustainable and eco-friendly manner is possible with the intervention of IAA producing endosymbiotic bacteria from Gracilaria arcticata.

References

DOI: http://dx.doi.org/10.21746/ijbio.2016.12.0012

Source of support: Nil

Conflict of interest: None Declared

http://dx.doi.org/10.21746/ijbio.2016.12.0012

pg. 5184