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Abstract: Cercospora Leaf  Spot (CLS) of  Swiss chard (Beta vulgaris L. var. cicla) remains an important foliar disease 
worldwide, yet the causative agent Cercospora beticola genetic variability remains incompletely understood in Botswana. 
To assess the diversity of  C. beticola from diseased Swiss chard in southern Botswana, 78 isolates from two farms were 
analyzed. C. beticola was isolated from Swiss chard at very high frequencies from both Bokaa (91%) and Glen Valley 
(86%) farms. However, statistical analyses indicated that the isolation rate of  the pathogen was not affected by the 
sampling location (p=0.01, p>0.01). Phylogenetic analyses revealed that the 18 sequenced C. beticola isolates clustered 
into four major classes, which could not be differentiated by the sampling location. Similarly, genetic analysis revealed 
high genetic diversity of  C. beticola strains from the two farms, accounted for by within population diversity (greatest 
pairwise distance=0.004). The results presented herein underscore the importance of  assessment of  genetic diversity of  
pathogens which may be important in targeted control and management of  plant diseases.
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Introduction 

Swiss chard (Beta vulgaris L. var. cicla) is an important 
green leaf  vegetable grown throughout Botswana 
[1, 2]. It is highly nutritive and its fresh leaves are 
rich in Vitamin C, K and A, minerals, dietary fibre 
and folic acid [3].

It therefore forms an important part of  dishes in 
Botswana, both as a relish and salad.

In Botswana, Swiss chard cultivation meant for the 
local market is carried out at a commercial scale 
in open fields and greenhouses [1]. Recent efforts 
aimed at poverty eradication by the government 
have seen an upsurge in backyard gardens, especially 
in rural areas [4], which meet subsistence demands 
of  poor rural households. Nonetheless, at all levels 
of  production Swiss chard cultivation is subjected 
to a plethora of  pest and microbial diseases [5, 6].

Leaf  spot of  Swiss chard is an important foliar 
disease in Botswana, having been reported as the 
major limiting factor in the production of  Swiss 
chard due to favourable environmental conditions 
that are characterized by high temperature and 

humid conditions during the summer. Khare and 
Moeng [7] established Cercospora beticola as one of  
the fungal agents responsible for low spinach seed 
germination in Botswana while Utlwang et al. [8] 
studied the efficacy of  locally available fungicides 
against Cercospora Leaf  Spot (CLS) of  Swiss chard 
under field conditions in the country.

Lesions of  CLS are normally 3-5 mm in diameter 
and appear as light to dark brown circular spots 
on spinach leaves [9]. Progression of  the disease 
eventually results in the blighted leaf  falling to 
the ground and phytotoxins produced by C. 
beticola causing yellowing and death of  the leaves 
[10]. Cercospora leaf  spot consequently leads to 
economic losses due to decrease in yields [9]. Since 
fungicides are used to control the disease, additional 
losses are incurred through their procurement.

McDonald and Linde [11] having stated that 
understanding the origin of  genetic variability in 
C. beticola is very important since it may affect the 
pathogen’s ability to evolve in response to control 
measures such as deployment of  resistant varieties 
or the application of  fungicides. Therefore, this 
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study aimed to isolate Cercospora beticola from 
Swiss chard at two fields in Gaborone, Botswana. 
Sequencing of  the Internal Transcribed Spacer 
(ITS) regions of  the ribosomal RNA was thereafter 
utilized to compare the populations of  Cercospora 
beticola thus obtained.

Materials and Methods

Sample collection

This study was carried out at two Swiss chard 
farms in southern Botswana; one located at Glen 
Valley (24° 35’ 55” S | 25° 57’ 46” E) and another 
located in Bokaa (24° 42’ 79’’ S | 26° 02’ 37’’ E). 
Fourty three and fourty five Symptomatic Swiss 
chard leaves showing CLS were collected from Glen 
Valley farm and Bokaa farm respectively. The leaves 
were placed into separately labelled sterile sample 
bags (Lab-Loc® Specimen) and the bags were then 
transported to the Mycology Laboratory (University 
of  Botswana) in a cooler box containing ice packs 
for mycological analysis. All samples were processed 
within 4 h of  collection.

Culture and morphological identification of 
Cercospora beticola

Isolation of  C. beticola was performed according 
to a method described previously [12]. Two discs 
containing lesions were excised from each Swiss 
chard leaves. The discs were moistened by dipping 
into sterile water for 2 h to facilitate the release of  
pseudothecia. The discs were then plated on the 
surface of  2% malt extract agar (Merck, Darmstadt, 
Germany) and incubated for 24 h in the dark for 
the release and germination of  canidia. The single 
canidia cultures thus germinated were examined 
for typical Cercospora beticola morphology (Figure 1), 
picked and transferred to fresh malt extract agar and 
then incubated at 25°C for 5-7 days.

DNA extraction and PCR amplification

Genomic DNA from fungal mycelia of  each 
isolate was done using the Master Pure yeast 
DNA purification kit (Epicetre Biotechnologies, 
Madison, WI, USA) according to instructions from 
the manufacturer. PCR amplification utilized ITS1 
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Figure 1: A. Shows symptomatic Swiss chard leaf  collected at Bokaa farms; B. Cultures grown from the 
symptomatic leaves; C. Weakly developed stroma with conidiophores ; D. Filliform conidium of  C. beticola, 
short and conically truncate at the tip; E. Loosely fasciculate conidiophores positioned on a stroma.
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(5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 
(5’-TCCTCCGCTTATTGATATGC-3’) primers 
[13] in a Techne thermocycler (Cole-Parmer, 
Staffordshire, UK). Each PCR reaction mixture 
consisted of  12.5 µL of  2X Master Mix (New 
England Biolabs, Ipswich, MA, USA), 1 µL each 
of  reverse and forward primers, 2 µL of  genomic 
DNA and the mixture made up to 25 µL with sterile 
nuclease-free water.

The PCR was run with the following thermocycling 
conditions: initial denaturation at 94°C for 8 min; 
followed by 35 cycles for 1 min at 94°C, 55°C for 
1 min and 2 min at 72°C and final extension at 
72°C for 12 min. The PCR products were resolved 
on 1% agarose gel (Sigma Aldrich, Missouri, USA) 
for 1 h at 80 V. 5 µL of  molecular weight marker 
(New England Biolabs) was loaded alongside 4 µL 
of  PCR products. The gels were then visualized on 
a gel documentation system (Bio-Rad, Carlifornia, 
USA). ). The PCR products were cleaned with a 
Clean-Up Kit (Zymo Research, Irvine, CA, USA) 
following instructions from the manufacturer. After 
purification, the products were sequenced in both 
directions using the Big Dye Terminator v3.1 cycle 
sequencing kit (Applied Biosystems, Foster City, 
CA, USA) in an automated ABI 3500XL sequencer 
(Applied Biosystems), following instructions from 
the manufacturer.

Statistical analyses

Graphpad Prism 7 (GraphPad Software Company, 
LaJolla, CA, USA) was used to analyze the statistical 
significance of  the data. One-way ANOVA was 
employed to separate the means of  occurrence of  

Cercospora beticola on Swiss chard in the two farms.

Phylogenetic analyses

Alignment of  sequences was done using consistency-
based algorithms implemented in Multiple 
Alignment using Fast Fourier Transform (MAFFT) 
version 7.307 [14] and assembly and editing of  
sequence data was performed using BioEdit [15]. 
The phylogenetic tree of  ITS rDNA was constructed 
using MEGA (Molecular Evolutionary Genetics 
Analysis program) version 6.06 [16]. The tree was 
inferred using the Neighbour-Joining method based 
on the Kimura-2 model. Bootstrap analysis involved 
1000 replicates for the tree. Furthermore, the genetic 
congruence among C. beticola isolates was analyzed 
using pairwise distances based on the Jukes-Cantor 
model [17] implemented in MEGA6.

Results

The present study comparatively analyzed 78 Cercospora 
beticola isolates from Swiss chard (Beta vulgaris L. var. 
cicla). C. beticola was isolated from Swiss chard in both 
Bokaa (91%) and Glen Valley (86%) farms (Table 
1). However, statistical analyses revealed that the rate 
of  isolation of  the pathogen was not affected by the 
sampling location (p=0.01, p>0.01).

Isolates that were putatively identified as C. 
beticola using morphological and microscopic 
characteristics (Figure 1) were further identified by 
amplification of  the Internal Transcribed Spacer 
(ITS) spacer region of  rDNA utilizing ITS1 
and ITS4 primers. All the 78 isolates that were 
amplified yielded bands that were approximately 
550 base pairs (Figure 2).

Host species
No. (%) positive from

Glen Valley farm Bokaa farm
Beta vulgaris (Swiss chard) 37 (86)*a                                     41 (91)

Table 1: Incidence of  C. beticola from Swiss chard at two farms in Southern Botswana.

*=Numbers in parentheses indicate percentages of  positive isolates. 
a=The data are not significantly different (p=0.01, p>0.01).

Figure 2: Gel electrophoresis of  the amplified rDNA 	 Internal Transcribed Sequence (ITS) region of  
Cercospora beticola isolates with ITS1 and ITS4 primers pairs. (M) 100 bp DNA ladder (New England Biolabs). 
Cercospora beticola isolates from; Glen valley Farms, (Lanes 1-7) and Bokaa farms, (Lanes 8-14).
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The present study amplified the 78 strains from Bokaa 
and Glen Valley farms. Thereafter, 18 PCR products 
were randomly selected for sequencing. The samples 
consisted of  9 C. beticola strains isolated from Swiss 
chard from Glen valley farms and 9 other samples 
from Bokaa farms. The letters Gv and Bk in the 
phylogenetic tree (Figure 3) above refer to Glen Valley 
and Bokaa farms, respectively. Figure 3 shows that 
phylogenetic analysis of  C. beticola isolates resulted in 
4 clusters. In cluster 2, isolate Gv24 and Bk7 dispersed 
from the other four isolates within the cluster and can 
therefore be considered a sub-population within a 
cluster. Furthermore, it is important to note that there 
were representatives of  C. beticola isolates from both 
farms within the four clusters.

The level of  pairwise nucleotide variation between 
individual haplotypes of  ITS gene were determined 
to be 0.000 to 0.004 (Figure 4), indicating high genetic 
diversity among Cercospora beticola isolates. The highest 
pairwise distance among the isolates was 0.004.

Discussion 

Molecular characterization of  pathogens of  
agricultural importance is a crucial factor in 
understanding epidemiology and control of  these 
pathogens. Previous studies [18, 19] have reported 
that C. beticola caused losses estimated at US$45 
million to the American Sugar Company, owing to 
fungicide application costs and yield losses.

Several genomic loci such as parts of  the histone, 
actin and calmodulin genes have been employed 
for the molecular identification of  Cercospora 
species [20]. In the present study, we employed the 
amplification of  the Internal Transcribed Spacer 
Regions (ITS) and intervening 5.8S rRNA genes of  
Cercospora beticola isolates from two farms in Southern 
Botswana. Amplification resulted in fragments 
ranging between 500-600 base pairs, a finding that 
was consistent with previous studies [21, 22].

In this study, Cercospora beticola was isolated from 

Figure 3: Evolutionary relationships among C. beticola isolates from Bokaa (denoted Bk) and Glen 
valley (Gv) farms. Cercospora zeaemaydis strain CBS 117757 was included as an outgroup.

Figure 4: Pairwise distances among C. beticola isolates infecting Swiss chard based on nucleotide sequence 
of  ITS gene.
#Swiss chard isolates from Bokaa are indicated as Bk while isolates from Glen valley are indicated as Gv 
followed by the isolate number, respectively.
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diseased leaves of  Swiss chard (Beta vulgaris L. var. 
cicla). C. beticola was isolated at high frequencies 
from both Bokaa (91%) and Glen valley (86%) 
farms. To assess the genetic diversity of  the isolates, 
we randomly pooled 18 isolates from the 78 strains 
that were putatively identified as Cercospora beticola by 
PCR for sequencing. Phylogenetic analysis revealed 
that the 18 strains clustered into four major clusters, 
including a distinct sub-cluster within cluster 2. 
This indicates a high degree of  genetic diversity 
of  C. beticola isolates in the present study. Notably, 
clustering of  the isolates could not be distinguished 
by their geographic origin (Bokaa or Glen valley 
farms). Moretti et al. [23] also found great 
intraspecific variability within a small population of  
Cercospora beticola infecting sugarbeet in Italy. Also 
in concordance with the present study, high genetic 
diversity was found within populations of  C. beticola 
from several European countries [24]. Furthermore, 
we evaluated the genetic diversity of  Swiss chard 
populations of  C. beticola using pairwise distances. 
This analysis also found high genetic diversity of  C. 
beticola isolates ranging from 0.000 to 0.004. Similar 
to results obtained utilizing phylogenetic analysis, 
populations of  C. beticola could not be differentiated 
based on place of  origin. These results are consistent 
with a recent study [25] which found genetically 
diverse C. beticola isolates obtained from Swiss 
chard and table beet that could not be discriminated 
based on sampling location or host in five fields 
at New York and Hawaii in the USA. Rousset [26] 
postulated that genetic diversity can be attributed to 
fungal populations with long distance dispersal of  
ascospores where a pattern of  isolation by distance 
is detected resulting from gradual spread of  the 
disease from its original source, hence resulting in 
genetic differentiation as distance increases. This 
study has demonstrated the genetic diversity of  
Cercospora beticola from Swiss chard at two farms of  
southern Botswana. The high genetic diversity is 
rather surprising because the pathogen is asexual, 
with no known sexual phase. However, mating type 
studies [27] have found evidence that suggested a 
cryptic sexual cycle in C. beticola. In light of  the high 
levels of  genetic diversity associated with isolates in 
the present study, we intend to conduct additional 
tests on the strains to assess the frequency of  
mating type genes in C. beticola. To ascertain this 
however, cross-inoculation tests will also be needed 
for verification [28].

Conclusion

Knowledge of  genetic diversity is an important tool in 
optimizing control of  crop pathogens. A recent study 
found resistance to some pesticide by C. beticola causing 
CLS in Swiss chard in Botswana, thus suggesting that 

chemical control alone may not prove a viable option. 
It remains a distinct possibility that some resistance 
may be linked to the genetic diversity of  C. beticola 
isolates in Botswana as demonstrated in this study. It 
thus remains important in pathogen disease cycles, 
to study the plant host as well as the genetic diversity 
of  the pathogen for enhanced efficacy of  control 
measures that prevent yield losses in important crops 
such as Swiss chard.
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